Math 521A

4.4 – Polynomial Functions, Roots, and Reducibility

Objective: To determine when a given polynomial is irreducible.

Throughout this section, R will denote a commutative ring. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in R[x].$$

Then f(x) induces a function $f : R \to R$ given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

f is called the polynomial function induced by f(x).

Let $a \in R$. If $f(a) = 0_R$, then a is called a root (or a zero) of f(x).

Example

The polynomial $x^2 + x + 1 \in \mathbb{Z}_2[x]$ induces the function $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ given by $f(x) = x^2 + x + 1$. Note that f(0) = 1 and f(1) = 1.

Example

The polynomial $x^2 + 7x + \frac{1}{2} \in \mathbb{Q}[x]$ induces the function $f : \mathbb{Q} \to \mathbb{Q}$ given by $f(x) = x^2 + 7x + \frac{1}{2}$. Note that

$$f(0) = rac{1}{2}, \ \ f(1) = rac{17}{2}, \ \ f\left(rac{-7+\sqrt{47}}{2}
ight) = 0.$$

Example

The polynomial $x^2 - 2 \in \mathbb{Q}[x]$ has no roots in \mathbb{Q} . However, if $x^2 - 2$ is regarded as a polynomial in $\mathbb{R}[x]$, then it has $\sqrt{2}$ and $-\sqrt{2}$ as roots.

Theorem (The Remainder Theorem) Let F be a field, $f(x) \in F[x]$, and $a \in F$. The remainder when f(x) is divided by x - a equals f(a).

3/6

Example

- i) Find the remainder when $x^4 3x + 1$ is divided by x 2 in $\mathbb{Q}[x]$.
- ii) Find the remainder when $x^{100} + 3x + 1$ is divided by x + 1 in $\mathbb{Q}[x]$.

Theorem (The Factor Theorem) Let F be a field, $f(x) \in F[x]$, and $a \in F$. Then

a is a root of f(x) if and only if x - a | f(x).

Example

The Factor Theorem can be used to show that $x^{20} + x^{19} + x^{15} + x^{13} + x + 1$ is reducible in $\mathbb{Z}_2[x]$.

Corollary

Let F be a field and f(x) a nonzero polynomial of degree n in F[x]. Then f(x) has at most n roots in F.

The proof is presented on the board.

Remark (about the last result): The Fundamental Theorem of Algebra states that every nonzero polynomial of degree n in $\mathbb{C}[x]$ has exactly n roots, counted with multiplicity. For example, $x^2 - 2x + 1 = (x - 1)^2$ has two roots in \mathbb{C} (r = 1 is a double root).

As we saw in Section 4.3, all polynomials of degree 1 in F[x] are irreducible.

Corollary

Let $f(x) \in F[x]$ with deg $f(x) \ge 2$. If f(x) is irreducible in F[x] then f(x) has no roots in F.

Corollary

Let $f(x) \in F[x]$ be such that deg f(x) = 2 or 3. Then f(x) is irreducible in F[x] if and only if f(x) has no roots in F.

Б		6
Э	/	0
	/	

Attention! When deg f(x) > 3, the converse of the result stated in the last corollary does not hold. For example, $p(x) = x^4 + x^2 + 1$ has no roots in $\mathbb{Z}_2[x]$, but it is reducible because

$$p(x) = (x^2 + x + 1)^2$$
 in $\mathbb{Z}_2[x]$

In $\mathbb{R}[x]$, $p(x) = x^4 + x^2 + 2 = (x^2 + x + 1) \cdot (x^2 - x + 1)$, and p(x) has no roots in \mathbb{R} .

Corollary

Let F be an infinite field and $f(x), g(x) \in F[x]$. Then f(x) and g(x) induce the same function if and only if f(x) = g(x) in F[x].

Remark: The last result fails if the field is finite. For example, although $f(x) = x^5 + x$ and g(x) = 2x are different polynomials in $\mathbb{Z}_5[x]$, they induce the same function in $\mathbb{Z}_5[x]$. To see this, check that f(i) = g(i) for i = 0, 1, 2, 3, 4.